Wednesday, May 2, 2012

How Do We Solve Linear Quadratic Systems?

y = x^2 - 2x  + 2
y - 2x  =  - 2                                 Step 1:  First you have to change this into standard form : Y = MX +B )
  +2x          +2x
 ----------------
 Y = 2x - 2
      

2x - 2 = x^2 - 2x +2                                         Step 2)  Substitute this variable into the quadratic equation
-2x +2           -2x+2
---------------------
      0 = X^2 -4x +4                                                       Step 3)  Solve the quadratic equation

0=(x -   2)(x -   2)

   You have to make the equation equal Zero so if it`s positive to make it zero you have to make it negative, so if it`s negative you have to make it Positive.
For example :
                      0 = (x - 2)
                         X has to be positive 2

But if it was 0 = (x +2)
                        X would have to be negative 2

So the value of X is 2 so what you do next is      Step 4) Substitute x value into linear equation to get y value
                  y =  2x- 2 = 2(2)- 2 =  2
                     Solution =  (2,2)

Monday, April 16, 2012

How Do We use the discriminant to Find the Number of Solutions To a Quadratic Equation?

The solutions to a quadratic Equation is when the Parabola touches the X- axis which are also called the "roots".

 The Discriminant is B^2 - 4AC

 If B^2 - 4ac > 0 you`ll get two solutions
 If B^2 - 4ac = 0 you`ll get one solution
 If B^2 - 4ac < 0 you`ll get no solution

For example :
                         X^2 + 6X + 9 = 0
A = 1                  B^2 - 4ac = ?
B = 6                   6^2 - 4(1)(9)
C = 9                    36 - 36 = 0

         (One solution) because its equal to Zero

Another example:
                              -16x^2 + 11x - 11 = 0
A = -16                     B^2 - 4ac =?
B = 11                      11^2 - 4(-16)(-11)
C = -11                    121-+ 64(-11)
                                   121 + -704
                                          -583
           (NO solution) because its less then Zero

   Example:
                      5x^2 + 2x - 10 = 0
A=5                b^2 - 4ac
B=2                   2^2 - 4(5)(-10)
C=-10                 4- 200
                             204
           ( Two solutions) because its greater then Zero

How Do We Work with quadratics?

The first thing that you should think of when you think of quadratics is the 
      Quadratic Equation:
                 
So if you have the equation x^2 + 2x - 1

  • First you have to find the value of A, B and C
  • The value of A is in front of the first x 

            A = 1

  • The value of B is in front of the second X                 

           B = 2
  The value of C is the number without an x after it
            C = -1
           Step 1: plug in      
        Step 2 : simplify                                                           

Sunday, March 18, 2012

How Do We Simplify Radicals?

Step 1: Find all the " Prime Factors" starting with the smallest Prime 
Step 2: Rewrite using square Notations
Step 3: Separate square root notations 


Example: Simplify .

180 = 2·  90 = 2· 2· 45 = 2· 2· 9· 5 = 2· 2· 3· 3· 5
Therefore,
 = 2· 3 = 6.
here is a video to help you understand better

Thursday, March 15, 2012

How do we Factor the difference of squares?

This expression is called a difference of two squares. 










The factors of          are and     



Example 1:
Factor:   x2 - 9Both x2 and 9 are perfect squares.  Since subtraction is occurring between these squares, this expression is the difference of two squares.
What times itself will give x?  The answer is x.
What times itself will give 9 ?  The answer is 3.
These answers could also be negative values, but positive values will make our work easier.
The factors are (x + 3) and (x - 3).
Answer:  (x + 3) (x - 3)  or   (x - 3) (x + 3)   
(order is not important)


Here is a video to help you understand better....

How do we divide polynomials?

 Simplify (2x + 4)/2

Factor out the common factor from the top and bottom, and then cancel off:



X = 2




Here is a video to help explain how to divide polynomials:

Monday, March 12, 2012

How do we identify all the Elements of a Parabola?

When you have the formula to graph a Parabola you need to be able to understand what it stands for/ says....


                      y = ax2 + bx + c
The  A for how wide or how narrow the parabola will be.
The   B stands for the line of symmetry
The  C tells you if its will be facing up or will be facing down.( If a Parabola is facing down the C is negative but if its facing up then the C is Positive)




To find the axis of symmetry you use the formula......






          X  = -  B
                       
                  2A


Roots are where and when the parabola touches the X-axis